Package: collinear 2.0.0
collinear: Automated Multicollinearity Management
Effortless multicollinearity management in data frames with both numeric and categorical variables for statistical and machine learning applications. The package simplifies multicollinearity analysis by combining four robust methods: 1) target encoding for categorical variables (Micci-Barreca, D. 2001 <doi:10.1145/507533.507538>); 2) automated feature prioritization to prevent key variable loss during filtering; 3) pairwise correlation for all variable combinations (numeric-numeric, numeric-categorical, categorical-categorical); and 4) fast computation of variance inflation factors.
Authors:
collinear_2.0.0.tar.gz
collinear_2.0.0.zip(r-4.5)collinear_2.0.0.zip(r-4.4)collinear_2.0.0.zip(r-4.3)
collinear_2.0.0.tgz(r-4.4-any)collinear_2.0.0.tgz(r-4.3-any)
collinear_2.0.0.tar.gz(r-4.5-noble)collinear_2.0.0.tar.gz(r-4.4-noble)
collinear_2.0.0.tgz(r-4.4-emscripten)collinear_2.0.0.tgz(r-4.3-emscripten)
collinear.pdf |collinear.html✨
collinear/json (API)
NEWS
# Install 'collinear' in R: |
install.packages('collinear', repos = c('https://blasbenito.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/blasbenito/collinear/issues
- toy - One response and four predictors with varying levels of multicollinearity
- vi - Example Data With Different Response and Predictor Types
- vi_predictors - All Predictor Names in Example Data Frame vi
- vi_predictors_categorical - All Categorical and Factor Predictor Names in Example Data Frame vi
- vi_predictors_numeric - All Numeric Predictor Names in Example Data Frame vi
machine-learningmulticollinearitystatistics
Last updated 13 days agofrom:968df67bff. Checks:OK: 3 NOTE: 4. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 10 2024 |
R-4.5-win | OK | Nov 10 2024 |
R-4.5-linux | OK | Nov 10 2024 |
R-4.4-win | NOTE | Nov 10 2024 |
R-4.4-mac | NOTE | Nov 10 2024 |
R-4.3-win | NOTE | Nov 10 2024 |
R-4.3-mac | NOTE | Nov 10 2024 |
Exports:add_white_noisecase_weightscollinearcor_categorical_vs_categoricalcor_clusterscor_cramer_vcor_dfcor_matrixcor_numeric_vs_categoricalcor_numeric_vs_numericcor_selectdrop_geometry_columnencoded_predictor_namef_auc_gam_binomialf_auc_glm_binomialf_auc_glm_binomial_poly2f_auc_rff_auc_rpartf_autof_auto_rulesf_functionsf_r2_gam_gaussianf_r2_gam_poissonf_r2_glm_gaussianf_r2_glm_gaussian_poly2f_r2_glm_poissonf_r2_glm_poisson_poly2f_r2_pearsonf_r2_rff_r2_rpartf_r2_spearmanf_vf_v_rf_categoricalidentify_predictorsidentify_predictors_categoricalidentify_predictors_numericidentify_predictors_typeidentify_predictors_zero_varianceidentify_response_typemodel_formulaperformance_score_aucperformance_score_r2performance_score_vpreference_orderpreference_order_collineartarget_encoding_labtarget_encoding_lootarget_encoding_meantarget_encoding_rankvalidate_data_corvalidate_data_vifvalidate_dfvalidate_encoding_argumentsvalidate_predictorsvalidate_preference_ordervalidate_responsevif_dfvif_select
Dependencies:codetoolsdigestfuturefuture.applyglobalslatticelistenvMatrixmgcvnlmeparallellyprogressrrangerRcppRcppEigenrpart